
> How to use this cheat sheet
Python is the most popular programming language in data science. It is easy to learn and comes with a wide array of
powerful libraries for data analysis. This cheat sheet provides beginners and intermediate users a guide to starting
using python. Use it to jump-start your journey with python. If you want more detailed Python cheat sheets, check out
the following cheat sheets below:

Importing data in python Data wrangling in pandas

Python Basics

Learn Python online at www.DataCamp.com

Python Cheat Sheet for Beginners

> Accessing help and getting object types
1 1

'a'

+ # Everything after the hash symbol is ignored by Python

 # Display the documentation for the max function

 # Get the type of an object — this returns str

help(max)
type()

> Importing packages
Python packages are a collection of useful tools developed by the open-source community. They extend the
capabilities of the python language. To install a new package (for example, pandas), you can go to your command
prompt and type in pip install pandas. Once a package is installed, you can import it as follows.

 pandas
pandas pd

pandas DataFrame

import
import as
from import

 # Import a package without an alias

 # Import a package with an alias

 # Import an object from a package

> The working directory
The working directory is the default file path that python reads or saves files into. An example of the working directory
is ”C://file/path". The os library is needed to set and get the working directory.

os
os.getcwd()
os.setcwd()

import # Import the operating system package

 # Get the current directory 

 # Set the working directory to a new file path"new/working/directory"

> Operators
Arithmetic operators
102 37
102 37
4 6
22 7

 +
-

*
/

 # Add two numbers with +

 # Subtract a number with -

 # Multiply two numbers with *

 # Divide a number by another with /

22 7
3 4
22 7

//
**
%

 # Integer divide a number with //

 # Raise to the power with **

 # Returns 1 # Get the remainder after

division with %

Assignment operators
a =
x[] =

5
0 1

 # Assign a value to a

 # Change the value of an item in a list

Numeric comparison operators
3 3
3 3
3 1

==
 !=
 >

 # Test for equality with ==

 # Test for inequality with !=

 # Test greater than with >

3 3
3 4
3 4

 >=
 <
 <=

 # Test greater than or equal to with >=

Test less than with <

 # Test less than or equal to with <=

Logical operators
~(==)
(!=) & (<)
2 2

1 1 1 1
 # Logical NOT with ~

Logical AND with &
(>=) | (<)
(!=) ^ (<)

1 1 1 1
1 1 1 1

Logical OR with |

Logical XOR with ^

> Getting started with lists
A list is an ordered and changeable sequence of elements. It can hold integers, characters, floats, strings, and even objects.

Creating lists
Create lists with [], elements separated by commas

x = [, ,]
1 3 2

List functions and methods
x. (x)
x.sort()

(x)
x. ()
x.count()

sorted

reversed
reversed

 # Return a sorted copy of the list e.g., [1,2,3]

Sorts the list in-place (replaces x)

 # Reverse the order of elements in x e.g., [2,3,1]

Reverse the list in-place

 # Count the number of element 2 in the list
2

Python lists are zero-indexed (the first element has index 0). For ranges, the first element is included but the last is not.

x = [, , , ,]
x[]
x[]

Define the list

 # Select the 0th element in the list

 # Select the last element in the list

'a' 'b' 'c' 'd' 'e'
0
-1

x[:]
x[:]
x[:]

1 3
2
3

 # Select 1st (inclusive) to 3rd (exclusive)

 # Select the 2nd to the end

 # Select 0th to 3rd (exclusive)

Define the x and y lists

x = [, ,]

y = [, ,]

1 3 6
10 15 21

x + y
 * x

Returns [1, 3, 6, 10, 15, 21]

Returns [1, 3, 6, 1, 3, 6, 1, 3, 6] 3

> Getting started with dictionaries
A dictionary stores data values in key-value pairs. That is, unlike lists which are indexed by position, dictionaries are indexed
by their keys, the names of which must be unique.

Creating dictionaries
Create a dictionary with {}

{ : , : , : }
'a' 1 'b' 4 'c' 9

Dictionary functions and methods

Selecting dictionary elements

x = { : , : , : }
x.keys()
x.values()

'a' 1 'b' 2 'c' 3 # Define the x ditionary

Get the keys of a dictionary, returns dict_keys(['a', 'b', 'c'])

 # Get the values of a dictionary, returns dict_values([1, 2, 3])

x[] 'a' # 1 # Get a value from a dictionary by specifying the key

> NumPy arrays
NumPy is a python package for scientific computing. It provides multidimensional array objects and efficient operations
on them. To import NumPy, you can run this Python code import numpy as np

Creating arrays
Convert a python list to a NumPy array 

1 2 3 # Returns array([1, 2, 3])

Return a sequence from start (inclusive) to end (exclusive) 

Returns array([1, 2, 3, 4])

Return a stepped sequence from start (inclusive) to end (exclusive) 

Returns array([1, 3])

Repeat values n times 

Returns array([1, 1, 1, 3, 3, 3, 6, 6, 6])

Repeat values n times

Returns array([1, 3, 6, 1, 3, 6, 1, 3, 6])

np.array([, ,])

np.arange(,)

np.arange(, ,)

np.repeat([, ,],)

np.tile([, ,],)

1 5

1 5 2

1 3 6 3

1 3 6 3

> Math functions and methods

np.quantile(x, q)
np. (x, n)
np.var(x)
np.std(x)

Calculate q-th quantile

Round to n decimal places

Calculate variance

 # Calculate standard deviation

round

All functions take an array as the input.

np.log(x)
np.exp(x)
np. (x)
np. (x)
np. (x)
np.mean(x)

Calculate logarithm

Calculate exponential

Get maximum value

Get minimum value

Calculate sum

Calculate mean

max
min
sum

> Getting started with characters and strings
Create a string with double or single quotes 

Embed a quote in string with the escape character \

Create multi-line strings with triple quotes

str # Get the character at a specific position

str # Get a substring from starting to ending index (exclusive)

"DataCamp"

"He said, \"DataCamp\""

"""

A Frame of Data

Tidy, Mine, Analyze It

Now You Have Meaning

Citation: https://mdsr-book.github.io/haikus.html

"""
 

0
0 2
[]
[:]

Combining and splitting strings
"Data" "Framed"
3 "data "
"beekeepers" "e"

+

*

.split()

Concatenate strings with +, this returns 'DataFramed'
Repeat strings with *, this returns 'data data data '

Split a string on a delimiter, returns ['b', '', 'k', '', 'p', 'rs']

Concatenate DataFrames vertically

Concatenate DataFrames horizontally

Get rows matching a condition

Drop columns by name

Rename columns

Add a new column

pd.concat([df, df])

pd.concat([df,df],axis=)

df.query()

df.drop(columns=[])

df.rename(columns={ : })

df.assign(temp_f= / * df[] +)

"columns"

'logical_condition'

'col_name'

"oldname" "newname"

9 5 'temp_c' 32

Calculate the mean of each column

Get summary statistics by column

Get unique rows

Sort by values in a column

Get rows with largest values in a column

df.mean()

df.agg(aggregation_function)

df.drop_duplicates()

df.sort_values(by=)

df.nlargest(n,)

'col_name'

'col_name'

> Getting started with DataFrames
Pandas is a fast and powerful package for data analysis and manipulation in python. To import the package, you can
use import pandas as pd. A pandas DataFrame is a structure that contains two-dimensional data stored as rows and
columns. A pandas series is a structure that contains one-dimensional data.

Creating DataFrames
Create a dataframe from a dictionary

pd.DataFrame({

 : [, ,],

: np.array([, ,]),

 : [, ,]

})

'a' 1 2 3
 'b' 4 4 6

'c' 'x' 'x' 'y'

Create a dataframe from a list of dictionaries

pd.DataFrame([

 { : , : , : },

 { : , : , : },

 { : , : , : }

])

'a' 1 'b' 4 'c' 'x'
'a' 1 'b' 4 'c' 'x'
'a' 3 'b' 6 'c' 'y'

Selecting DataFrame Elements
Select a row, column or element from a dataframe. Remember: all positions are counted from zero, not one.

df.iloc[]

df[]

df[[,]]

df.iloc[:,]

df.iloc[,]

Select the 3rd row

Select one column by name

Select multiple columns by names

Select 2nd column

Select the element in the 3rd row, 2nd column

3

'col'

'col1' 'col2'

2

3 2

Manipulating DataFrames

Selecting list elements

Concatenating lists
Mutate strings
str
str
str
str
str

 =
.upper()
.lower()
.title()
.replace(,)

"Jack and Jill"

"J" "P"

Define str

Convert a string to uppercase, returns 'JACK AND JILL'

Convert a string to lowercase, returns 'jack and jill'

 # Convert a string to title case, returns 'Jack And Jill'

Replaces matches of a substring with another, returns 'Pack and Pill'

