
Docker for Data Science
Cheat Sheet
Learn online at www.DataCamp.com

> Advantages and Disadvantages of Containers

Role Native software Virtual machine Docker or other container

Complexity Low High Medium

Portability Low Medium High

Reproducibility Low High High

Startup time Low High Medium

Scalability Low High High

Resource efficiency High Low High

Isolation (Security) Low High Medium

Managing dependencies Low Medium High

> Definitions

 Docker image: A read-only template containing all the necessary files, libraries, and
dependencies required to run an application in a Docker container

 Docker container: A running instance of an image. That is, an executable package including
the code, libraries, and dependencies needed to run the application

 Dockerfile: A script containing instructions to create the image

 Docker registry: A repository for storing, sharing, and managing Docker images. These
include Docker Hub, Amazon Elastic Container Registry, Microsoft Azure Container Registry,
and Google Cloud Container Registry

 Docker Engine: An application for managing Docker containers. It includes a server (the
"Docker daemon"), a command line tool (the Docker client), and an API for other software to
interact with the Docker Daemon

 Docker client: A command-line tool to interact with Docker Engine to manage Docker images
and containers

 Docker daemon (a.ka. Docker server): A background process that manages Docker images
and containers according to the commands sent from the Docker client.

> Getting Help

Display Docker version with docker --version

Display Docker system info with docker info

Get help on Docker with docker --help

Get help on Docker command usage with docker {command} --help

docker --version

docker info

docker --

docker run --

help

help

> Image Management

List all local images with docker images

Show Docker disk usage with docker system df

Show image creation steps from intermediate layers with docker history {image}

Save an image to a file with docker save --output {filename}

Usually combined with a compression tool like gzip

Load an image from a file with docker load --input {filename}

Delete an image with docker rmi {image}

docker images

docker system df

docker history alpine

docker save julia | gzip > julia.tar.gz

docker load --input julia.tar.gz

docker rmi rocker/r-base

> Working with Registries

Log in to Docker with docker login --username {username}

Pull an image from a registry with docker pull {image}

Pull a version of an image from a registry with docker pull {image}:{tag}

Tag an image to a repo with docker tag {image} {user}/{repo}

Push an image to a registry with docker push {repo_tag}

Search for an image with docker search "{image-search-text}

docker login --username doctordocker

docker pull julia

docker pull julia:1.8.5-bullseye

docker tag python doctordocker/myrepo

docker push doctordocker/myrepo

"docker search "py"

> Creating Dockerfiles

Derive image from another image with FROM{image}

Set a build and runtime environment variable with ENV {name}={value}

Set a build-time variable with ARG {name}={default_value}

Set the working directory with WORKDIR {path}

Switch to the user with USER {username}

Copy a local file into the image with COPY {existing_path} {image_path}

Run a shell command during the build step with RUN {command}

\ lets commands continue across multiple lines

&& means run this command only if the preceding command succeeded

Run a shell command on launch with CMD ["{executable}", "{param1}"]

Each Dockerfile should only have 1 CMD statement

 [] # Start Python interactively

FROM ubuntu:jammy-

TZ=

VERBOSE=

/home

doctordocker

 ./settings/config.yml ./settings/config.yml

apt-get update \

 && install -y libxml2-dev

,

20230301

"America/New_York"

1

"python" "-i"

ENV

ARG

WORKDIR

USER

COPY

RUN

CMD

> Running Containers

Run a container with docker run {image}

Runs a test container to check your installation works

Run a container then use it to run a command with docker run {image} {command}

Run Python & print text

 # Run R & print a model

Run a container interactively with docker run --interactive --tty

Run R interactively

Run a container, and remove it once you've finished with docker run --rm

Run MySQL, then clean up

Run an image in the background with docker run --detach

Run an image, assigning a name, with docker --name {name} run

Run redis, naming the container as red1

Run an image as a user with docker run --user {username}

docker run hello-world

docker run python python -c
docker run rocker/r-base r -e

docker run --interactive --tty rocker/r-base

docker run --rm mysql

docker run --detach postgres

docker run --name red1 redis

docker run --user doctordocker mongo

"print('Python in Docker')"
"print(lm(dist~speed, cars))"

> Inspecting Containers

List all running containers with docker ps

List all containers with docker ps --all

List all containers matching a conditions with docker ps --filter {key}={value}

Show container log output with docker logs --follow {container}

 # Print current datetime

 # Print what bb container printed

docker ps

docker ps --all

docker ps --filter

docker run --name bb busybox sh -c
docker logs --follow bb

' '

'name=red1'

" "$(echo date)

> Managing Containers

docker run is equivalent to docker create + docker start

Create a container from an image with docker create {image}

Start a container with docker start {container}

Same as docker run --name py --interactive --tty python

Create a new image from a container with docker container commit {container}

Stop a container with docker stop {container}

Container has option to save state or ignore request

Kill a container with docker kill {container}# Container process finished immediately

Kill and remove a container with docker rm --force {container}

​​Stop then start a container with docker restart {container}

Delete stopped containers with docker container prune

Create an image from a container with docker container commit {container_id} {image}

Find the container ID with docker ps --all

docker create --name py --interactive --tty python

docker start --interactive --attach py

docker container commit

docker stop py

docker py

docker rm --force py

docker restart py

docker container prune

docker container commit 123456789abc newimage

kill

> Building Images

Build an image with docker build {path}

Build a tagged image with docker build --tag {name:tag} {path}

 .

Build an image without using the cache docker build -no-cache {path}

docker build .

docker build --tag myimage:

docker build --no-cache .

2023-edition

Learn Docker Online at
www.DataCamp.com

