
> Setup
To get started, you need to

 Create an OpenAI Developer accoun
 Add a payment method to your OpenAI developer accoun
 Retrieve your secret key and store it as an environment variable

We recommend using a platform like DataCamp Workspace that allows secure storage of your API secret key.

You'll need to load the package to access your secret key, the openai package to access the API, to make some
JSON output easier to work with, and some functions from to render markdown output.

os pandas
IPython.display

> Find Similar Text with Embeddings
GPT models can be used for converting text to a numeric array that represents its meaning (embedding it), in order to find
similar text.

Basic Flow for Embeddings
Embed a line of text

Extract the AI output embedding as a list of floats

response = openai.Embedding.create(

 model= ,

 =[]

)

embedding = response[][][]

"text-embedding-ada-002"
"YOUR TEXT TO EMBED"

"data" 0 "embedding"

input

> Create Images with DALL-E
DALL-E can be used to generate images from text.

Basic Flow for Image Generation

Get the Image Directly

Control Output Quantity

Return generated image directly with response_format="b64_json"

)

Decompress image & display

response = openai.Image.create(

 prompt=

,

 response_format=

 base64 b64decode

img_bytes = b64decode(response[][][])

img = Image. (BytesIO(img_bytes))

display(img)

"Digital illustration of data scientist  
 and a robot high-fiving."

"b64_json"

"data" 0 "b64_json"

from import

open

Utilities for PNG image display

Generate images with openai.Image.create()

Retrieve the image from a URL & display

from import
from import

from import

open

 PIL Image

 io BytesIO

response = openai.Image.create(

 prompt=

)

 requests get

img_bytes = get(response[][0][]).content

img = Image. (BytesIO(img_bytes))

display(img)

"Oil painting of data scientist rejoicing  
 after mastering a new AI skill."

"data" "url"

Return multiple images with n argument

Access ith image URL or compressed bytes

Reduce the image size with the size argument

Choices are 256x256, 512x512, 1024x1024 (default)

response = openai.Image.create(

 prompt= ,

 n=
)

response[][i][]

response[][i][]

response = openai.Image.create(

 prompt= ,

 size=
)

"A data scientist winning a medal in the data Olympics."
3

"data" "url"
"data" "b64_json"

"A data scientist saving the world from alien attack."
"256x256"

> Convert Speech to Text with Whisper
Audio files can be converted to text. Supported file formats are , , , , , , and . The output
can be given in the original language or in English.

Supported models
 Whisper (recommended)

mp3 mp4 mpeg mpga m4a wav webm

whisper-1:

Basic flow for transcription
Transcribe the file with openai.Audio.transcribe()

Note that model is the second arg here, not the first

with open as

file

(,) audio_file:

 transcript = openai.Audio.transcribe(

 = audio_file,

 model = ,

 response_format= ,

 language=
)

"audio.mp3" "rb"

"whisper-1"
"text"

"en"

Improve transcription performance
Include partial script in a prompt to guide to improve quality

transcript = openai.Audio.transcribe(..., prompt=)"Welcome to DataFramed!"

Example Workflow
Embeddings are typically applied row-wise to text in a DataFrame. Consider this Dataframe, , of pizza reviews (only 5
reviews shown; usually you want a bigger dataset).

pizza

Review

The best pizza I've ever eaten. The sauce was so tangy!

The pizza was disgusting. I think the pepperoni was made from rats.

I ordered a hot-dog and was given a pizza, but I ate it anyway.

I hate pineapple on pizza. It is a disgrace. Somehow, it worked well on this pizza though.

I ate 11 slices and threw up. The pizza was tasty in both directions.

Helper function to get embeddings

Get embedding for each row of a text column of a DataFrame

def get_embedding(txt):

 txt = txt.replace(,)

 response = openai.Embedding.create(

 model= ,

 input=[txt]

)

 return response[][][]
 

pizza[] = pizza[]. (get_embedding)

"\n" " "

"text-embedding-ada-002"

"data" 0 "embedding"

"embedding" "review" apply

Import the necessary packages

Set openai.api_key to the OPENAI environment variable

import
import
import as
from import

List available models

list

 os

 openai

 pandas pd

 IPython.display display, Markdown

openai.api_key = os.environ[]

pd.json_normalize(openai.Model. (),)

"OPENAI"

"data"

> Generate Text with GPT
Basic flow for Chat

The GPT model supports chat functionality where you can insert a prompt and it responds with a message. Supported
models for chat are

 : GPT-4 (recommended for high-performance use
 : GPT-4, snapshotted on 2023-03-1
 : GPT-4 with 32k context (recommended for high performance, long chats
 : GPT-4 32k, snapshotted on 2023-03-1
 : GPT-3.5 (recommended for cost-effective use
 : GPT-3.5, snapshotted on 2023-03-01

There are three types of messages
 : Specifies how the AI assistant should behave
 : Specifies what you want the AI assistant to say
 : Contains previous output from the AI assistant or specifies examples of desired AI output.

"gpt-4"
"gpt-4-0314"
"gpt-4-32k"
"gpt-4-32k-0314"
"gpt-3.5-turbo"
"gpt-3.5-turbo-0301"

system
user
assistant

Converse with GPT with openai.ChatCompletion.create()

Check the response status

Extract the AI output content

Render the AI output content

response = openai.ChatCompletion.create(

 model= ,

 messages=[{

 }, {

 }, {

 }

]

)

response[][][]

ai_output = response[][][][]

display(Markdown(ai_output))

"gpt-3.5-turbo"

"role": "system",

 "content": 'You are a stand-up comic performing to an audience of data
scientists. Your specialist genre is dad jokes.'

 "role": "user",

 "content": 'Tell a joke about statistics.'

"role": "assistant",

 "content": 'My last was gig at a statistics conference. I told 100 jokes to try
and make people laugh. No pun in ten did.'

"choices" 0 "finish_reason"

"choices" 0 "message" "content"

Tune Chat Output
Alter the randomness and novelty of the output text by tuning it.

Control randomness with temperature (default is 1)

temperature=0 gives highly deterministic output

temperature=2 gives highly random output

Control randomness using nucleus sampling with top_p (default is 1)

top_p = 0 gives highly deterministic output

top_p = 1 gives highly random output

Control talking about new topics using presence_penalty (default is 0)

presence_penalty=-2 gives more repetition in conversations

presence_penalty=2 gives more novelty in conversations

frequency_penalty behaves similarly, but counts number of instances

of previous tokens rather than detecting their presence

Limit output length with max_tokens

response = openai.ChatCompletion.create(mdl, mssgs, temperature=)

response = openai.ChatCompletion.create(mdl, mssgs, top_p=)

response = openai.ChatCompletion.create(mdl, mssgs, presence_penalty=)

response = openai.ChatCompletion.create(mdl, mssgs, max_tokens=)

0.5

0.5

1

500

Cheat sheet:

The OpenAI API in Python

Learn AI online at www.DataCamp.com

Create Alternate Output Formats
Create Subrip subtitles with openai.Audio.transcribe(response_format="srt")

Create Video Text Track subtitles with openai.Audio.transcribe(response_format="vtt")

Get metadata with openai.Audio.transcribe(response_format="verbose_json")

transcript = openai.Audio.transcribe(..., response_format=)

transcript = openai.Audio.transcribe(..., response_format=)

response = openai.Audio.transcribe(..., response_format=)

transcript = pd.json_normalize(response)

"srt"

"vtt"

"verbose_json"

Translate Audio to English
Transcribe the file & translate to English with openai.Audio.translate()

with open(,) audio_file:

 transcript = openai.Audio.translate(

 file = audio_file,

 model = ,

 response_format=
)

"audio.mp3" "rb"

"whisper-1"
"text"

as

Learn AI Online at
www.DataCamp.com

