Introduction to Probability Rules Cheat Sheet

Learn statistics online at www.DataCamp.com

Definitions

The following pieces of jargon occur frequently when discussing probability. Event: A thing that you can observe whether it happens or not.
Probability: The chance that an event happens, on a scale from 0 (cannot happen) to 1 (always happens). Denoted P(event).
Probability universe: The probability space where all the events you are considering can either happen or not happen.
Mutually exclusive events: If one event happens, then the other event cannot happen (e.g., you cannot roll a dice that is both 5 and 1).
Independent events: If one event happens, it does not affect the probability that the other event happens (e.g., the weather does not affect the outcome of a dice roll).
Dependent events: If one event happens, it changes the probability that the other event happens. (e.g., the weather affects traffic outcomes).

Conjunctive probability (a.k.a. joint probability): The probability that all events happen. Disjunctive probability: The probability that at least one event happens. Conditional probability: The probability that one event happens, given another event happened.

Complement Rule: Probability of events not

 happeningDefinition: The complement of A is the probability that event A does not

$A^{\prime} \quad$| Definition: The complement of |
| :--- |
| happen. $1 t$ is denoted A^{\prime} or $A c^{c}$ |

Formula: $P\left(A^{\prime}\right)=1-\mathrm{P}(\mathrm{A})$
Example: The probability of basketball player Stephen Curry successfully Example The probability of basketball player Stephen Curry successfully
shooting a three-pointer is 0.43 . The complement, the probability that he
misses, is $1-0.43=0.57$.

Odds: Probability of event happening versus not happening

[^0]Multiplication Rules: Probability of two events happening

Mutually exclusive events
Formula: $P(A \cap B)=0$
Example: If the probabiility of it being sunny at midday is 0.3 and the probability of it raining at midday is 0.4, the probability of it being sunny and
\qquad rainy is 0 , since these events are mutually exclusive.

Independent events

Definition: The probability of two independent events happening is the product Definition: The probabiilty of two
of the probabiilitis of each event.
Formula: $P(A \cap B)=P(A) P(B)$
Example: If the probability of it being sunny at midday is 0.3 and the Example If the probability of it being sunny at midday is 0.3 and the
promability of your faverite soccer team winning their game today is 0.6 , the probabitity of your favorite soccer team wining their game today is 0.6, the
then probability of it being sunny at midday and your favorite soccer team
winning their game today is $0.3 \times 0.6=0.18$. winning their game today is $0.3 * 0.6=0.18$.

The conjunctive fallacy

Definition: The probabiility of both events happening is always less than or equal to the probability of one event happening. That is $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A})$, and $\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{B})$. The conjunctive fallaccy is when you don't think
carefully about probabilitise and estimate that probability fot both events carefulig about probabinites and
probability of one of the events.
Example: A famous example known as 'The Linda problem" comes from a 1980 s research experiment. A fictional person was described:
Linda is 31 years old, single, outspoken, and very bright. She majored in philisosphy. As a student, she was deeply
concerned with issues of discriminotion and sociaij justice and olso participoted in ati-nuclear demostration Linda is 31 years old, single outspoken, and very bright. She mojored in philiosophy. As astudent, she was deeply
concerned with issues of discrimination and social justice and also participated in anti-nuclear demonstrations. Participants had to choose which statement had a higher probability of being true 1. Linda is a bank teller.
2. Linda is a bank teller
2. Lindd is a bank teller and is active in the feminist movement.

Many participants chose fell for the conjunctive fallacy and chose option 2 , even though it must be less likely
than ootion 1 using the multipication rule.

Bayes Rule: Probability of an event
happening given another event happened
Definition: For dependent events, the probability of event B happening given that event A happened is is equal to the probability that both events happen divided by the probability that event A happens. Equivalently,
equal to the probability that event A happens given that event B happened tio
 probability that event A happens
Formula: $P(B \mid A)=P(A \cap B) / P(A)=P(A \mid B) P(B) / P(A)$
Example: Suppose it's a cloudy morring and you want to know the Example: Suppose it's a cloudy morning and you want to know the
probability of rain today. If the probability it raining that day given a cloudy morring is 0.6 , and the probability of it raining on any day is 0.1 cloudy morning is $0 .$. , and the probability of t raining on any day probability of it raining given a cloudy morning is $0.6 * 0.1 / 0.3=0.2$. That is, if you have a cloudy morning it is twice as likely to rain than if you didn't have a cloudy morring, due to the dependence of the events.

Addition Rules: Probability of at least one event happening
Mutually exclusive events

Definition: The probability of at least one mutually exclusive event happening
the sum of the probabilities of each event happening.
Formula: $P(A \cup B)=P(A)+P(B)$
Example: If the probability of it being sunny at midday is 0.3 and the probability of it raining at midday is 0.4 , the probability of it being sunny
rainy is $0.3+0.4=0.7$, since these events are mutually exclusive.
$-$
Independent events

Union $A \cup B$
 sum of the probabilities of each event happening minus the probability of bo
events happening
Formula: $P(A \cup B)=P(A)+P(B)-P(A \cap B$
Example: If the probability of it being sunny at midday is 0.3 and the probabiility of your favorite soccerer team winining their game today is 0.6 , the
then probability of it being sunny at midday or your favorite soccer team
winning their game today is $0.3+0.6-(0.3 * 0.6)=0.72$.

The disjunctive fallacy

Definition: The probability of at least one event happening is always greater than or equal to the probability of one event happening. That is $P(A \cup B) \geq P(A)$, and $P(A \cup B) \geq P(B)$. The disiunctive
fallacy is when you don't think carefully about probabilities and estimate that the probability of at least one event happening is less than the probability of one of the events. Example: R
probability:

1. Linda is a bank teller.
2. Linda is a bank teller or is active in the feminist movement.

The disisunctive fallacy would be to think that choice 1 had a higher probability of being true, even
though that is impossible because of the additive rule of probabilities.

[^0]: Definition: The odds of event A
 that the event doesn't happen
 Formula: $\operatorname{Odds}(A)=P(A) / P\left(A^{\prime}\right)=P(A) /(1-P(A)$
 Example: The odds of basketball player Stephen Curry successfully shooting a three-pointer is the probability Example: The odds of basketbal player Stephen Curry successfully shooting
 that he scores divided by the probability that he misses, $0.43 / 0.57=0.75$.

